Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang-Gen Hu,* Ai-Hua Zheng and Gui-Hua Li

Department of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail:
huyangg111@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.117$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Methylphenyl)-2-(1-pyridyl)-3H-benzo-[4,5]furo[3,2-d]pyrimidin-4-one

In the crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$, the packing of the molecules is mainly governed by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ interactions.

Comment

In recent years, we have been engaged in the preparation of heterocyclic derivatives containing a fused pyrimidinone system using the aza-Wittig reaction (Ding, Chen \& Huang, 2004; Ding, Xu \& Zhao, 2004; Ding et al. 2005). Some X-ray crystal structure reports for benzofuro[3,2- d]pyrimidine derivatives have been published (Hu, Li et al., 2005; Hu, Xu et al., 2005; Sun \& Hu, 2005). We describe here the structure of the title compound, (I), prepared using an iminophosphorane with 4-methylphenyl isocyanate and by a subsequent reaction with piperidine under mild conditions.

(I)

(II)

The three fused rings of the benzofuro[3,2- d]pyrimidine system are essentially coplanar (Fig. 1). The piperidine ring shows a distorted chair conformation $\left[\varphi=203.84(2)^{\circ}\right.$ and $\theta=$ $175.54(2)^{\circ}$, puckering amplitude $=0.583(2) \AA$; Cremer \& Pople, 1975]. An intermolecular C-H. . O hydrogen bond between the ketone group and the methyl-substituted benzene ring (Table 2 and Fig. 2) is effective in stabilizing the crystal structure. There are also intermolecular $\pi-\pi$ interactions (Janiak, 2000). In the benzofuro[3,2-d]pyrimidine system, the maximum and minimum interplanar perpendicular distances between adjacent rings related by an inversion centre are 3.400 (3) and 3.650 (3) \AA, respectively, the centroid-tocentroid distances are 3.613 (3) and 3.461 (3) \AA, and the dihedral angles are 0.00 (2) and 2.57 (2) ${ }^{\circ}$ (Fig. 2).

Experimental

To a solution of iminophosphorane ($1.40 \mathrm{~g}, 3 \mathrm{mmol}$) in dry dichloromethane (15 ml) was added 4-methylphenyl isocyanate (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273-278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 $\mathrm{v} / \mathrm{v}, 20 \mathrm{ml})$ was added to precipitate triphenylphosphine oxide.

Received 1 March 2006 Accepted 12 March 2006
\qquad

organic papers

After filtration, the solvent was removed to give the carbodiimide 3-p-tolyliminomethyleneaminobenzofuran-2-carboxylic acid ethyl ester, (II), which was used directly without further purification. To a solution of (II) in dichloromethane (15 ml) was added piperidine $(3 \mathrm{mmol})$. After the reaction mixture was allowed to stand for 0.5 h , the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I). The product was recrystallized from ethanol-dichloromethane ($1: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) at room temperature to give crystals suitable for X-ray diffraction (m.p. 485 K , yield 82%).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=359.42$
Monoclinic, $P 2_{1} / n$
$a=14.4774$ (12) A
$b=7.7044$ (7) A
$c=16.6859$ (15) A
$\beta=97.754$ (2) ${ }^{\circ}$
$V=1844.1$ (3) \AA^{3}
$Z=4$

Data collection

Bruker SMART 4K CCD area-
detector diffractometer
φ and ω scans
Absorption correction: none
10894 measured reflections
3995 independent reflections
$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3667 reflections
$\theta=2.5-27.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.30 \times 0.30 \times 0.30 \mathrm{~mm}$

2960 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-15 \rightarrow 18$
$k=-9 \rightarrow 9$
$l=-21 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.117$
$S=0.98$
3995 reflections
246 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0668 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.16$ e \AA^{-3}
$\Delta \rho_{\min }=-0.22$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.023 (2)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-N1	$1.4735(18)$	C14-N2	$1.4243(16)$
C5-N1	$1.4715(16)$	C15-O2	$1.3791(15)$
C6-N3	$1.3015(15)$	C16-N3	$1.3694(16)$
C6-N1	$1.3904(16)$	C18-O2	$1.3852(15)$
C6-N2	$1.3961(15)$	C7-N2	$1.4501(15)$
C14-O1	$1.2174(15)$		
N1-C1-C2	$110.02(12)$	C15-C16-N3	$123.87(11)$
N1-C5-C4	$110.02(11)$	N3-C16-C17	$129.97(12)$
N3-C6-N1	$120.37(10)$	C19-C18-O2	$125.01(13)$
N3-C6-N2	$123.83(11)$	O2-C18-C17	$111.55(11)$
N1-C6-N2	$115.76(10)$	C8-C7-N2	$120.29(11)$
O1-C14-C15	$128.27(12)$	C6-N3-C16	$115.31(10)$
O1-C14-N2	$121.65(11)$	C6-N2-C14	$123.33(10)$
C15-C14-N2	$110.04(10)$	C6-N1-C5	$115.10(10)$
C16-C15-O2	$112.87(11)$	C15-O2-C18	$104.38(10)$
N2-C14-C15-C16	$-3.14(18)$	N1-C6-N3-C16	$-179.70(11)$
N2-C14-C15-O2	$177.82(11)$	N3-C6-N2-C14	$2.12(19)$
O2-C15-C16-N3	$-177.53(11)$	N1-C6-N2-C7	$6.34(17)$
C20-C19-C18-O2	$179.72(12)$	N3-C6-N1-C5	$18.96(17)$
C22-C17-C18-O2	$-179.73(11)$	C14-C15-O2-C18	$179.87(12)$
C16-C17-C18-O2	$0.96(14)$	C17-C18-O2-C15	$-1.05(13)$
N2-C7-C8-C9	$-178.73(12)$		

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing view of (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) and the $\pi-\pi$ stacking interactions. H atoms attached to C atoms have been omitted for clarity. The suffixes a, b and c correspond to symmetry $\operatorname{codes}\left(\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right),\left(\frac{3}{2}-x, \frac{1}{2}-y, \frac{1}{2}-z\right)$ and $(2-x, 1-y$, $1-z$), respectively.

Table 2
Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}_{1}{ }^{\mathrm{i}}$	0.93	2.51	$3.2369(16)$	135

Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
The H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93(\mathrm{CH})$, $0.97\left(\mathrm{CH}_{2}\right)$ and $\left.0.96 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2\left(1.5\right.$ for methyl) times $U_{\text {eq }}(\mathrm{C})$.

organic papers

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (grant No. D200524005).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Ding, M.-W., Chen, Y.-F. \& Huang, N.-Y. (2004). Eur. J. Org. Chem. 18, 38723878.

Ding, M.-W., Huang, N.-Y. \& He, H.-W. (2005). Synthesis, 10, 16011604.

Ding, M.-W., Xu, S.-Z. \& Zhao, J.-F. (2004). J. Org. Chem. 69, 83668371.

Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. \& He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.
Hu, Y.-G., Xu, S.-Z., Yuan, J.-Z., Ding, M.-W. \& He, H.-W. (2005). Acta Cryst. E61, o2649-o2651.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, Y. \& Hu, Y.-G. (2005). Acta Cryst. E61, o4233-o4235.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

